
Security Certification in Payment Card Industry:
Testbeds, Measurements, and Recommendations

Sazzadur Rahaman1, Gang Wang2, Danfeng (Daphne) Yao1
1Computer Science, Virginia Tech, Blacksburg, VA

2Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
sazzad14@vt.edu,gangw@illinois.edu,danfeng@vt.edu

Abstract

The massive payment card industry (PCI) involves various entities

such as merchants, issuer banks, acquirer banks, and card brands.

Ensuring security for all entities that process payment card infor-

mation is a challenging task. The PCI Security Standards Council

requires all entities to be compliant with the PCI Data Security

Standard (DSS), which specifies a series of security requirements.

However, little is known regarding how well PCI DSS is enforced in

practice. In this paper, we take a measurement approach to system-

atically evaluate the PCI DSS certification process for e-commerce

websites. We develop an e-commerce web application testbed, Bug-

gyCart, which can flexibly add or remove 35 PCI DSS related

vulnerabilities. Then we use the testbed to examine the capability

and limitations of PCI scanners and the rigor of the certification

process. We find that there is an alarming gap between the security

standard and its real-world enforcement. None of the 6 PCI scanners

we tested are fully compliant with the PCI scanning guidelines, issu-

ing certificates to merchants that still have major vulnerabilities. To

further examine the compliance status of real-world e-commerce

websites, we build a new lightweight scanning tool named Pci-

CheckerLite and scan 1,203 e-commerce websites across various

business sectors. The results confirm that 86% of the websites have

at least one PCI DSS violation that should have disqualified them

as non-compliant. Our in-depth accuracy analysis also shows that

PciCheckerLite’s output is more precise than w3af. We reached

out to the PCI Security Council to share our research results to

improve the enforcement in practice.

CCS Concepts

• Security and privacy → Web application security;Web pro-

tocol security.

Keywords

Payment Card Industry; Data Security Standard; Internet Measure-

ment; Website Scanning; Data Breach; Web Security; Testbed; E-

commerce;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’19, November 11ś15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363195

ACM Reference Format:

Sazzadur Rahaman, Gang Wang, Danfeng (Daphne) Yao. 2019. Security

Certification in Payment Card Industry: Testbeds, Measurements, and Rec-

ommendations. In 2019 ACM SIGSAC Conference on Computer & Commu-

nications Security (CCS’19), November 11ś15, 2019, London, UK. ACM, New

York, NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363195

1 Introduction

Payment systems are critical targets that attract financially driven

attacks. Major card brands (including Visa, MasterCard, American

Express, Discover, and JCB) formed an alliance named Payment

Card Industry Security Standards Council (PCI SSC) to standardize

the security requirements of the ecosystem at a global scale. The PCI

Security Standards Council maintains, updates, and promotes Data

Security Standard (DSS) [27] that defines a comprehensive set of

security requirements for payment systems. PCI DSS certification

has established itself as a global trademark for secure payment

systems. According to PCI DSS [27],

łPCI DSS applies to all entities involved in payment card process-

ing ś including merchants, processors, acquirers, issuers, and service

providers. PCI DSS also applies to all other entities that store, process,

or transmit cardholder data and/or sensitive authentication data.ž

The PCI Security Standards Council plays a major role in eval-

uating the security and compliance status of the payment card

industry participants and supervises a set of entities that are re-

sponsible to perform compliance assessments such as Qualified

security assessors (QSA) and Approved scanning vendors (ASV).

All entities in the PCI ecosystem, including merchants, issuers, and

acquirers, need to comply with the standards. PCI standards specify

that entities need to obtain their compliance reports from the PCI

authorized entities (e.g., QSA and ASV) and periodically submit

the reports in order to maintain their status. For example, a mer-

chant needs to submit its compliance report to the acquirer bank

to keep its business account active within the bank. Similarly, card

issuer and acquirer banks need to submit their compliance reports

to the payment brands (e.g., Visa, MasterCard, American Express,

Discover, and JCB) to maintain their membership status [27].

However, several recent high-profile data breaches [14, 72] have

raised concerns about the security of the payment card ecosystem,

specially for e-commerce merchants1. A research report from Gem-

ini Advisory [21] shows that 60 million US payment cards have

been compromised in 2018 alone. Among the merchants that ex-

perienced data breaches, many were known to be compliant with

the PCI data security standards (PCI DSS). For example, in 2013,

Target leaked 40 million payment card information due to insecure

1Merchants that allow online payment card transactions for selling products and
services are referred to as łe-commerce merchantsž.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

481

practices within its internal networks [72], despite that Target was

marked as PCI DSS compliant. These incidents raise important

questions about how PCI DSS is enforced in practice.

In this paper, we ask: how well are the PCI data security standards

enforced in practice? Do real-world e-commerce websites live up to the

PCI data security standards? These questions have not been exper-

imentally addressed before. We first design and develop testbeds

and tools to quantitatively measure the degree of PCI DSS compli-

ance of PCI scanners and e-commerce merchants. PCI scanners are

commercial security services that perform external security scans

on merchants’ servers and issue certificates to those who pass the

scan. By setting up our testbed, i.e., an e-commerce website with

configurable vulnerabilities, we empirically measure the capability

of PCI scanners and the rigor of the certification process.

Our results show that the detection capabilities of PCI scanners

vary significantly, where even PCI-approved scanners fail to re-

port serious vulnerabilities in the testbed. For 5 of the 6 scanners

evaluated, the reports are not compliant with the PCI scanning

guidelines [19]. All 6 scanners issued certificates to web servers

that still have major vulnerabilities (e.g., sending sensitive informa-

tion over HTTP). Even if major vulnerabilities are detected (e.g.,

remotely accessible MySQL), which should warrant an łautomatic

failurež according to the guideline [19], some PCI scanners still

proceed with certification regardless.

Given the weak scanner performance, it is possible that real-

world e-commerce websites still have major vulnerabilities. For

validation, we build a new lightweight scanning tool and perform

empirical measurements on 1,203 real-world e-commerce websites.

Note that for independent researchers or third-parties, scanning in

the PCI context imposes a new technical challenge, namely the non-

intrusive low-interaction constraint. The low interaction constraint,

necessary for testing live production sites, makes it difficult to test

certain vulnerabilities externally. Traditional penetration testing

(pentest) tools are not suitable to test live websites in production

environments. For example, pentest tools such as w3af [4] have

brute-force based tests which require intense URL fuzzing (e.g.,

prerequisite for SQL injection, XSS) or sending disruptive payload.

The feedback from the PCI Security Council during our disclosure

(Section 6) also confirmed this challenge.

Our technical contributions and findings are summarized below.

• We design and develop an e-commerce web application testbed

called BuggyCart, where we implant 35 PCI-related vulner-

abilities such as server misconfiguration (e.g., SSL/TLS and

HTTPS misconfigurations), programming errors (e.g., CSRF,

XSS, SQL Injection), and noncompliant practices (e.g., storing

plaintext passwords, PAN, and CVV). BuggyCart allows us to

flexibly configure vulnerabilities in the testbed for measuring

the capabilities and limitations of PCI scanners. We are in the

process of open-sourcing BuggyCart and sharing it with the

PCI security council (Section 3).

• Using BuggyCart, we evaluated 6 PCI scanning services, rang-

ing frommore expensive scanners (e.g., $2,995/Year) to low-end

scanners (e.g., $250/Year). The results showed an alarming gap

between the specifications of the PCI data security standard

and its real-world enforcement. For example, most of the scan-

ners choose to certify websites with serious SSL/TLS and server

User

E-Commerce

Acquirer Bank

1

Merchant POS

Acquirer POS

Issuer Bank

2 3

5 6

7 8

4

910

Merchant Payment Gateway

Payment Network

Figure 1: Overview of the payment card ecosystem.

misconfigurations. None of the PCI-approved scanning vendors

detect SQL injection, XSS, and CSRF. 5 out of the 6 scanners are

not compliant with the ASV scanning guidelines (Section 4).

• We further evaluated 4 generic web scanners (not designed for

PCI DSS), including two commercial scanners and two open-

source academic solutions (w3af [4], ZAP [2]). We examine

whether they can detect the web-application vulnerabilities

missed by PCI scanners. Unfortunately, most of these vulnera-

bilities still remain undetected. (Section 4).

• We conducted empirical measurements to assess the

(in)security of real-world e-commerce websites. We carefully

designed and built a lightweight vulnerability scanner

called PciCheckerLite. Our solution to addressing the non-

intrusiveness challenge is centered at minimizing the number

of requests that PciCheckerLite issues per test case, while

maximizing the test case coverage. It also involves a collection

of lightweight heuristics that merge multiple security tests

into one request. Using PciCheckerLite, we evaluated 1,203

e-commerce website across various business categories. We

showed that 94% of the websites have at least one PCI DSS

violation, and 86% of them contains violations that should have

disqualified them as non-compliant (Section 5). Our in-depth

accuracy analysis also showed that PciCheckerLite’s outputs

have fewer false positives than the w3af counterpart (Table 6).

Based on our results, we further discuss how various PCI stake-

holders, including the PCI council, scanning providers, banks, and

merchants, as well as security researchers, can collectively improve

the security of the payment card ecosystem (Section 6).

2 Background on PCI and DSS

We start by describing the background for the security practices,

workflow, and standards of the current PCI ecosystem that involves

banks, store-front and e-commerce vendors, and software providers.

Then, we focus on how merchants obtain security certifications

and establish trust with the banks. We discuss how the certification

process is regulated and executed.

2.1 Payment Card Ecosystem

The Payment Card Industry (PCI) has established a working sys-

tem that allows merchants to accept user payment via payment

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

482

cards, and complete the transactions with the banks in the back-

end. Figure 1 shows the relationships between the key players in

the ecosystem, including users, merchants, and banks. The user

and the merchant may use different banks. The issuer bank issues

payment cards to the user and manages the user’s credit or debit

card accounts (step ❶). Users use the payment card at various types

of merchants (steps ❷, ❺, and ❼). The acquirer bank manages an

account for the merchant to receive and route the transaction infor-

mation (steps ❹, ❻, and ❽). The acquirer bank ensures that funds

are deposited into the merchant’s account once the transaction is

complete via the payment network (steps ❾ and ❿). The payment

network, also known as the card brands (e.g., Visa, MasterCard),

bridges between the acquirer and the issuer banks.

There are different types of merchants. For merchants that run

an e-commerce service (i.e., all transactions are made online), they

usually interact with the acquirer bank via a payment gateway (e.g.,

Stripe, Square), which eases the payment processing and integration

(❸). For merchants that have a physical storefront, they use point-

of-sale (POS) devices, i.e., payment terminals, to collect and transfer

user card information to the acquirer bank. They can use either the

acquirer bank’s POS (❼) or their own POS (❺). The key difference is

that acquirer POS directly transfers the card information to the bank

without storing the information within the merchant. Merchant

POS, however, may store the card information.

Due to the fact that e-commerce websites and merchant POSes

need to store card information, the merchants need to prove to

the bank that they are qualified to securely handle the information

processing. The acquirer bank requires these merchants to obtain

PCI security certifications in order to maintain accounts with the

bank [11]. Next, we introduce the security certification process.

2.2 PCI Council and Data Security Standard

Payment Card Industry Security Standards Council manages a num-

ber of specifications to ensure data security across the extremely

complex payment ecosystem. Among all the specifications, only

the Data Security Standard (DSS) and Card Production and Pro-

visioning (CPP) are required. All the other specifications (shown

in Table 8 in the Appendix) are recommended (i.e., optional). CPP

is designed to regulate card issuers and manufactures. The Data

Security Standard (DSS) is the most important specification that

is required to be complied by issuer banks, acquirer banks, and

all types of merchants and e-commerce sites, i.e., all systems that

process payment cards. Our work is focused on the DSS compliance.

In the PCI Data Security Standard specifications [27], there are

12 requirements that an organization must follow to protect user

payment card data. These requirements cover various aspects rang-

ing from network security to data protection policies, vulnerability

management, access control, testing, and personnel management.

In total, there are 79 more detailed items under the 12 high-level

requirements. We summarize them in the Appendix (Table 9).

DSS applies to all players in the ecosystem, including all mer-

chants and acquirer/issuer banks. For merchants, they need to ap-

prove their compliance to the acquirer bank to open an account for

their business. For acquirer and issuer banks, they need to prove

their compliance to the card brands (e.g., Visa, MasterCard) for the

eligibility of membership.

Table 1: PCI Compliance levels and their evaluation criteria.

Level Transactions
Compliance Requirements

Per Year
Self-report

with SAQ

Sec Scans

by ASV

Sec Audits

by QSA

Level 1 Over 6M Quarterly Quarterly Required

Level 2 1M ś 6M Quarterly Quarterly Required/Optional

Level 3 20K ś 1M Quarterly Quarterly Not Required

Level 4 Less than 20K Quarterly Quarterly Not Required

We use the merchant as an example to illustrate how DSS com-

pliance is assessed. First, the PCI security standard council provides

the specifications and self-assessment questionnaires (SAQ) [11].

Merchants self-assess their DSS compliance and attach the question-

naires in their reports. Second, the merchant must pass the security

tests and audits from external entities such as Approved Scanning

Vendors (ASV) and the Qualified Security Assessors (QSA). The PCI

council approves a list of ASV and QSA [20] for the assessment.

Security scanning is conducted by certified scanners (Approved

Scanning Vendors or ASVs) on card processing entities. Security

scanning is performed remotely without the need for on-site au-

diting. Not all the requirements can be automatically verified by

the remote scanning (see Table 8 in the Appendix). The PCI council

provides an ASV scanning guideline [19], which details the respon-

sibilities of the scanners (see Table 7 in the Appendix).

Self-assessment questionnaires (SAQs) allow an organization

to self-evaluate its security compliance [29]. In SAQs, all the ques-

tions are close ended. More SAQ analysis is presented in Section 6.

Security audit is carried out by Qualified Security Assessors

(QSAs). It requires on-site auditing (e.g., checking network and

database configurations, examining software patches, and inter-

viewing employees). As security scanning cannot verify all of the

DSS properties, on-site audits are to cover those missing aspects.

Level of compliance varies for different organizations. The com-

pliance level is usually determined by the number of annual fi-

nancial transactions handled by the organization. Each acquirer

bank (or card brand) has its own program for compliance and val-

idation levels. In Table 1, we show the tentative compliance lev-

els that roughly match most of the payment brands [11, 23]. The

self-assessment questionnaires (SAQs) and security scanning are

required quarterly regardless of the compliance levels. Only large

organizations that handle over 1 million transactions a year are

required to have the on-site audit (by a QSA). The majority of

merchants are small businesses, (e.g., 85% of merchants all over the

world have less than 1million USDweb sale [15]). Thus, most online

merchants rely on ASV scanners and self-reported questionnaires

for compliance assessment.

2.3 Our Threat Model and Method Overview

Threat Model. The certification process is designed as an enforce-

ment mechanism for merchants to hold a high-security standard

to protect user data from external adversaries. If the certification

process is not well executed, it would allowmerchants with security

vulnerabilities to store payment card data and interact with banks.

In addition, such security certification may also create a false sense

of security for merchants. We primarily focus on the automatic

server screening by PCI scanners given that all merchants need

to pass the scanning. We also briefly analyze the Self-assessment

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

483

Questionnaire (SAQs). Our analysis does not cover on-site audits,

because i) on-site audit is not required for the vast majority of the

merchants and ii) it is impossible to conduct analysis experiments

on on-site audits without partnerships with service providers.

Methodology Overview. To systematically measure and compare

the rigor of the compliance assessment process, our methodology

is to build a semi-functional e-commerce website as a testbed and

order commercial PCI scanning services to screen and certify the

website. The testbed allows us to easily configure website instances

by adding or removing key security vulnerabilities that PCI DSS

specifies. We leverage this testbed to perform controlled measure-

ments on the certification process of a number of PCI scanners. In

addition to the controlled experiments, we also empirically measure

the security compliance of real-world e-commerce websites with a

focus on a selected set of DSS requirements. In the following, we

describe our detailed measurement methodologies and findings.

3 Measurement Methodology

In this section, we describe our measurement methodology for

understanding how PCI scanners perform data security standard

(DSS) compliance assessment and issue certificates to merchants.

The core idea is to build a re-configurable testbed where we can

add or remove key security vulnerabilities related to DSS and gen-

erate testing cases. By ordering PCI scanning services to scan the

testbed, we collect incoming network traffic as well as the security

compliance reports from the scanning vendors. In the following, we

first describe the list of vulnerabilities that our testbed covers, and

then introduce the key steps to set up the e-commerce frontend.

3.1 Security Test Cases

The testbed contains a total of 35 test cases, where each test case

represents a type of security vulnerabilities. Running a PCI scanner

to scan the testbed could reveal vulnerabilities that the scanner can

detect, as well as those that the scanner fails to report.We categorize

the 35 security test cases i1śi35 into four categories, namely network

security, system security, application security, and secure storage.

Note that there are 29 test cases in the first three categories are

within the scope of ASV scanners (i.e., ASV testable cases). The

other 6 cases under łsecure storagež cannot be remotely verified.

We include these cases to illustrate the limits of ASV scanners.

(1) Network security (14 test cases). These testing cases are

related to network security properties, including firewall status,

(i1), the access to critical software from network (i2śi4), default

passwords (i5śi6), the usage of HTTP to transmit sensitive data

(e.g., customer or admin login information) (i7), and SSL/TLS

misconfigurations (i12śi18).

(2) System security (7 test cases). These test cases are related to

system vulnerabilities, including vulnerable software (i19śi20),

server misconfigurations (i29śi32), and HTTP security headers

(i33).

(3) WebApplication security (8 test cases). These test cases are

related to application-level problems including SQL injections

(i21śi22), not following secure password guidelines (i23śi24),

the integrity of Javascripts from external sources (i25), revealing

crash reports (i26), XSS (i27) and CSRF (i28).

(4) Secure storage (6 test cases). Secure storage is impossible to

verify through external scans. Thus, DSS does not require PCI

scanners to test these properties, such as storing sensitive user

information (i8), storing and showing PAN in plaintext (i9śi11),

and insecure ways of storing passwords (i34śi35). In PCI DSS,

merchants need to fill out the self-assessment questionnaire

about how they handle sensitive data internally. We choose to

include these vulnerabilities in the testbed for highlighting the

fundamental limitations of external scans on some important

aspects of server security.

Must-fix Vulnerabilities. These test cases are designed following

the official ASV scanning guideline [19] and the PCI data security

standard (DSS) [27]. Among the 35 cases, 29 are within the scope

(responsibility) of ASV scanners that can be remotely tested. After

vulnerabilities are detected, website owners are required to fix any

vulnerabilities that have a CVSS score ≥ 4.0, and any vulnerabil-

ities that are marked as mandatory in PCI DSS. CVSS (Common

Vulnerability Scoring System) measures the severity of a vulner-

ability (score 0 to 10). The CVSS scores in Table 3 are calculated

using CVSSv3.0 calculator [1]. Vulnerabilities that have no CVSS

score are marked as łN/Až. If the website owner fails to resolve the

łmust-fixž vulnerabilities, a scanner should not issue the compliance

certification. As shown in Table 3, 26 out of the 29 testable cases are

required to be fixed. Three cases (vulnerability 3, 4, and 18) are not

mandatory to fix. For example, exposing OpenSSH to the Internet

(case-3) does not mean immediate danger as long as the access is

well protected by strong passwords or SSH keys.

Completeness and Excluded Cases. When building our Buggy-

Cart testbed and the PciCheckerLite prototype, we exclude five

mandatory ASV scanning cases: i) backdoors or malware, ii) DNS

server vulnerabilities, e.g., unrestricted DNS zone transfer, iii) vul-

nerabilities in mail servers, iv) vulnerabilities in hypervisor and

virtualization components, and v) vulnerabilities in wireless access

points. Most of them (namely, ii, iii, iv, and v) are not relevant, as

they involve servers or devices outside our testbed or an applica-

tion server. In the first category, it is difficult to design a generic

network-based testing case. We also exclude the non-mandatory

cases (shown in the last 4 rows of Table 7 in the Appendix).

Note that ASV testable cases only represent a subset of PCI DSS

specifications [27] because some specifications are not remotely

verifiable. There are specifications related to organization policies,

which are impossible to verify externally, e.g., łrestricting physical

access to cardholder dataž (DSS req. 9), and łdocumenting the key

management processž (DSS req. 3.6). They can only be assessed

by onsite audits, which unfortunately are not applicable to the

majority of e-commerce websites and small businesses (see Table 1).

We will discuss this further in Section 6.

Our PciCheckerLite prototype in Section 5 scans 17 test cases

in Table 5, which are a subset of the 29 externally scannable rules in

Table 3. When scanning live production websites, we have to elimi-

nate cases that require intrusive operations such as web crawling,

URL fuzzing, or port scanning.

3.2 Testbed Architecture and Implementations

A key challenge of measuring PCI scanners is to interact with PCI

scanners like a real e-commerce website does, in order to obtain

reliable results. This requires the testbed to incorporate most (if not

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

484

all) of the e-commerce functionality to interact with PCI scanners

and reflect the scanners’ true performance. For this reason, we

choose the OpenCart [26] as the base to build our testbed. OpenCart

is a popular open source PHP-based e-commerce solution used

by real-world merchants to build their websites. This allows us

to interact with PCI scanners in a realistic manner to ensure the

validity of measurement results.

Testbed Frontend. The frontend of our testbed supports core e-

commerce functionality, such as account registration, shopping cart

management, and checkout and making payment with credit cards.

The code of the website2 is based on OpenCart. We rewrote the

OpenCart system by integrating all 35 security vulnerabilities and

testing cases. We deployed the website using Apache HTTP server

and MySQL database. Our testbed automatically spawns a website

instance following a pre-defined configuration. We used OpenSSH

as the remote access software and Phpmyadmin to remotelymanage

the MySQL database. We hosted our website in Amazon AWS in a

single t2.medium server instance with Ubuntu 16.04. We obtained a

valid SSL certificate to enable HTTPS from Let’s Encrypt [25].

We set up the website solely for research experiment purposes.

Thus, it does not have a real payment gateway. Instead, we set up a

dummy payment gateway that imitates the real gateway Cardcon-

nect [22]. The website forwarded credit card transactions to this

dummy payment gateway. The dummy endpoint for Cardconnect

is implemented using flask-restful framework. We modified the

/etc/hosts file of our web server to redirect the request. During

our experiments, our server did not receive any real payment trans-

action requests. We further discuss research ethics in Section 3.3.

Implementing Security Test Cases. Next, we describe the im-

plementation details of the 35 security test cases in Table 3.

For the network security category, we implement test cases i1 to

i3 by changing inbound traffic configurations within the Amazon

AWS security group. Test case i4 (administer access over Internet) is

implemented by changing phpmyadmin configuration. For test case

i5 (default SQL password), we do not set any password for łrootž

and enable access from any remote host. Test case i5 is implemented

by configuring phpmyadmin (no password for user łrootž). Test

case i7 is set to keep port 80 (HTTP) open without a redirection to

port 443 (HTTPS). Test cases i12, i14, i16, and i17 are implemented

by using default certificates from Apache. Test cases i13 and i18 are

implemented by changing SSLCipherSuite and SSLProtocol of the

Apache server. For test case i15, we configure the Apache server to

use a valid certificate but with a wrong domain name.

For the system security category, we implement test cases i19ś

i20 by installing software that are known to be vulnerable. For

test case i19, we use OpenSSL 7.2, which is vulnerable to privilege

escalation and timing side channel attacks. For test case i20, we

used phpmyadmin 4.8.2 which is known to be vulnerable to XSS. We

implemented test cases i29 to i33 by changing the configurations

of the Apache server. For test case i33 (HTTP security header)

in particular, we consider X-Frame-Options, X-XSS-Protection, X-

Content-Type-Options, and Strict-Transport-Security.

For the web application security category, we implement test

cases i21 to i28 by modifying OpenCart source code [26]. Regarding

secure password guidelines, we disable password retry restrictions

2The URL was www.rwycart.com. We took the site offline after the experiment.

for both users and administrators (test case i23), disable the length

checking of passwords (test case i24). For SQL injection, we modify

the admin login (test case i21) and customer login (test case i22)

code to implement SQL injection vulnerabilities. For admin login,

we simply concatenate user inputs without sanitation for the login

query. For the customer login, we leave an SQL injection vulner-

ability at the login form. Given that the user password is stored

as unsalted MD5 hashes, we run the login query by concatenating

the MD5 hash of the user-provided password, which is known to

be vulnerable to SQL injection [5]. For XSS and CSRF, we implant

an XSS vulnerability in the page of editing customer profiles, by

allowing HTML content in the łfirst namež field (test case i27). By

default, Opencart does not have any protection against CSRF (test

case i28). For test case i26 (displaying errors), we configure Open-

Cart to reveal crash reports (an insecure practice, which gives away

sensitive information). Opencart by default does not check the in-

tegrity of Javascript code loaded from external sources (test case

i25).

For the secure storage category, we modify the Cardconnect

extension to store CVV in our database (test case i8) and the full

PAN (instead of the last 4 digits) in the database in plaintext (test

case i10). We add an option to encrypt PANs before storing, but

the encryption key is hardcoded (test case i11). We also update the

customers’ order history page to show the unmasked PAN for each

transaction (test case i9). Finally, the testbed stores the raw unsalted

MD5 hash of passwords for customers (test case i34) and plaintext

passwords for admins (test case i35).

3.3 Research Ethics

We have taken active steps to ensure research ethics for our mea-

surement on PCI scanners (Section 4). Given that our testbed is

hosted on the public Internet, we aim to prevent real users from

accidentally visiting the website (or even putting down credit card

information). First, we only put the website online shortly before

the scanning experiment. After each scanning, we immediately

take down the website. Second, the website domain name is freshly

registered. We never advertise the website (other than giving the

address to the scanners). Third, we closely monitor the HTTP log of

the server. Any requests (e.g., for account registration or payment)

that are not originated from the scanners are dropped. Network

traffic from PCI scanners are easy to distinguish (based on IP and

User-Agent) from real user visits. We did not observe any real user

requests or payment transactions during our experiments.

All PCI scanners run automatically without any human involve-

ment from the companies. We order and use the scanning services

just like regular customers. We never actively generate traffic to

the scanning service, and thus our experiments do not cause any

interruptions. Our experiments follow the terms and conditions

specified by the scanning vendors, which we carefully examined.

We choose to anonymize the PCI scanners’ names since some scan-

ning vendors strictly forbid publishing any benchmark results. We

argue that publishing our work with anonymized scanner names is

sufficient for the purpose of describing the current security practice

in the payment card industry, as the security issues reported are

likely industry-wide, not unique to the individual scanners eval-

uated. In addition, anonymization would help alleviate the bias

toward individual scanners and potential legal issues [54].

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

485

Baseline Version

Certi�ed Version

PCI Scanner

Fixing a minimal

set of vulnerabilities

to get PCI DSS certi�ed

Scanning Reports

Scanning

Scannin
g

BuggyCart Testbed

Figure 2: Illustration of the baseline scanning and the certi-

fied version. A PCI scanner iteratively scans the testbed. The

initial scan (baseline) is on the original testbed with all 35

vulnerabilities. The certified version is the testbed version

where the testbed successfully passes the scanning after we

iteratively fix a minimal set of vulnerabilities in the testbed.

In Table 3, we report the scanning results on both versions

of the testbed for each scanner.

In Section 5, we also carefully design our experiments when

evaluating the compliance of 1,203 websites. The experiment is

designed in a way that generates minimal footprints and impact on

the servers, in terms of the number of connection requests to the

servers. Our client is comparable to a normal client and does not

cause any disruption to the servers. For example, we quickly closed

the connection, after finding out whether or not an important port

is open. More details are be presented in Section 5.

4 Evaluation of PCI Scanners

Our first set of experiments is focused on evaluating PCI scanners

to answer the following research questions. Later in Section 5, we

will introduce our second set of experiments on measuring the

security compliance of real-world e-commerce websites.

• How do various PCI scanners compare in terms of their detec-

tion capabilities? (Section 4.1)

• What are the security consequences of inadequate scanning

and premature certification? (Section 4.2)

• How are web scanners (commercial or open-source ones) com-

pared with PCI scanners in terms of detection capabilities?

(Section 4.3)

We selected 8 U.S. based PCI DSS scanners as shown in Table 2.

The selection process is as follows. From the list of approved ven-

dors [20]3, we found 85 of them operate globally. Out of these 85,

we aimed to identify a set of ASVs that appear to be of high quality

(e.g., judging from the company’s reputations and websites) and

somewhat affordable (due to our limited funding), while also cov-

ering different price ranges. We identified 6 such scanners. For 3

of them, the prices are publicly available. For the other 3 scanners,

we emailed them through our rwycart.com email addresses. 2 of

them (Scanner7 and Scanner8) did not provide their price quota-

tions, which forced us to drop them from our evaluation (due to our

3As of April 30, 2019, 97 companies are approved by the PCI Council as the approved
scanning vendors (ASVs) [20].

Table 2: Prices of PCI scanners and the actual costs.

PCI Scanners Price Spent Amount PCI SSC Approved?

Scanner1 $2,995/Year $0 (Trial) Yes

Scanner2 $2,190/Year $0 (Trial) Yes

Scanner3 $67/Month $335 No

Scanner4 $495/Year $495 Yes

Scanner5 $250/Year $250 Yes

Scanner6 $59/Quarter $118 No

Scanner7 Unknown N/A Yes

Scanner8 $350/Year N/A Yes

Total - $1198 -

organization policies). During our search, we also found that some

website owners used non-ASV scanners. Thus, we also included

2 non-ASVs that have good self-reported quality. Non-approved

scanners offer commercial PCI scanning services, but are not on the

ASV list [20] of the PCI council4. Because of the legal constraints

imposed by the terms and conditions of scanners, we cannot reveal

scanners’ names. Researchers who wish to reproduce or extend our

work for scientific purposes without publishing scanner names are

welcome to contact the authors.

We conducted experiments successfully with 6 of the scanners

(without Scanner7 and Scanner8 for the reason mentioned above).

We use the email address (wayne@rwycart.com) associated with

the testbed e-commerce website to register accounts at the scanning

vendors. Table 2 shows the prices of these 6 vendors. For Scanner2

and Scanner1, we completed our experiments within the trial period

(60 days for Scanner2 and 30 days for Scanner1). The trial-version

and the paid-version offer the same features and services.

Iterative Test Design. Given a PCI scanner, we carry out the eval-

uation in two high-level steps shown in Figure 2. Every scanner

first runs on the same baseline testbed with all the vulnerabili-

ties built in. Then we remove a minimal set of vulnerabilities to

get the testbed certified for PCI DSS compliance. The final certi-

fied instance of the testbed may be different for different scanners,

as high-quality scanners require more vulnerabilities to be fixed,

having fewer remaining (undetected) vulnerabilities on the testbed.

(1) Baseline Test. We spawn a website instance where all 35 vul-

nerabilities are enabled (29 of them are remotely verifiable).

Then we order a PCI scanning service for this testbed. During

the scanning, we monitor the incoming network traffic. We

obtain the security report from the scanner, once the scanning

is complete.

(2) Certified Instance Test.After the baseline scanning, we mod-

ify the web server instance according to the obtained report.

We perform all the fixes required by the PCI scanner and order

another round of scanning. The purpose of this round of scan-

ning is to identify theminimal set of vulnerabilities that need to

be fixed in order to pass the PCI DSS compliance certification.

In summary, we perform the following steps for each scanner: i)

implant vulnerabilities under each test case in the testbed, ii) run

4To become an ASV, a scanner service needs to pay a fee and go through a testbed-based
approval evaluation supervised by the PCI Council.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

486

Table 3: Testbed scanning results. łBaselinež indicates the scanning results on our testbed when all the 35 vulnerabilities are

active. łCertifiedž indicates the scanning results after fixing the minimum number of vulnerabilities in order to be compliant.

ł#ž, łG#ž, ł žmeans severity level of low,medium, and high respectively according to the scanners. ł✗žmean łundetectedž, ł✓ž

means łfixed in the compliant versionž, ł✓∗ž means łfixed as a side-effect of another casež. The łwebsite scannersž represent

a separate experiment to determine whether website scanners can help to improve coverage. We ran the website scanners

on test cases that were not detected by the PCI ASV scanners. łN/Až means "not testable by an external scanner". ł-ž means

"testable but do not need to tested". The "Must Fix" column shows the vulnerabilities that must be fixed by the e-commerce

websites in order to be certified as PCI DSS compliant.

Rq. Test Cases
Vul.

Location

In
A
SV

Sc
o
p
e?

C
V
SS

Sc
o
re

M
u
st
Fi
x
?

Scanner2 Scanner5
Scanner4

/ Scanner1

Scanner6

(not aprvd.)

Scanner3

(not aprvd.)

Website

Scanners

B
as
el
in
e

C
er
ti
fi
ed

B
as
el
in
e

C
er
ti
fi
ed

B
as
el
in
e

C
er
ti
fi
ed

B
as
el
in
e

C
er
ti
fi
ed

B
as
el
in
e

C
er
ti
fi
ed

Sc
an
n
er
2W

Sc
an
n
er
5W

W
3a
f

Z
A
P

1.1 1. Firewall detection OS Y N/A Y # # # # # # ✗ ✗ ✗ ✗ - - - -

1.2

2. Mysql port (3306) detection OS Y N/A Y ✓ G# ✓ # # # # # # - - - -

3. OpenSSH detected OS Y N/A N G# ✓ # # # # # # # # - - - -

4. Remote access to Phpmyadmin Apache Y N/A N G# ✓ # # # # # # # # - - - -

2.1
5. Default Mysql user/password Mysql Y 8.8 Y ✓ # ✓∗

 ✓ ✓ ✓ - - - -

6. Default Phpmyadmin passwords Apache Y 8.8 Y ✗ ✓∗ ✗ ✗ ✗ ✗ # # ✗ ✗ - - - -

2.3 7. Sensitive information over HTTP Apache Y 8.1 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

3.2 8. Store CVV in DB Webapp N N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3.3 9. Show unmasked PAN Webapp N N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3.4 10. Store plaintext PAN Webapp N N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

3.5 11. Hardcoded key for encrypting PAN Webapp N N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

4.1

12. Use untrusted selfsigned cert. Apache Y 9.8 Y G# ✓ G# ✓ G# ✓ G# ✓ ✗ ✗ - - - -

13. Insecure block cipher (Sweet32) Apache Y 7.5 Y G# ✓ G# ✓ # # G# ✓ ✗ ✗ - - - -

14. Expired SSL cert. Apache Y 5.3 Y G# ✓ G# ✓ ✓ G# ✓ ✗ ✗ - - - -

15. Wrong domain names in cert. Apache Y 5.3 Y G# ✓ ✗ ✗ # # # # ✗ ✗ - - - -

16. DH modulus <= 1024 Bits Apache Y 5.3 Y # ✓∗
G# ✓ G# ✓ G# ✓ ✗ ✗ - - - -

17. Weak Hashing in SSL cert. Apache Y 5.3 Y G# ✓ ✗ ✓∗ ✗ ✓∗
G# ✓ ✗ ✗ - - - -

18. TLS 1.0 supported Apache Y 3.7 N ✓ ✓ G# ✓ ✗ ✗ ✗ ✗ - - - -

6.1
19. Vulnerable OpenSSH (7.2) OS Y 7.8 Y ✓ ✓ ✓ ✗ ✗ ✗ ✗ - - - -

20. Vulnerable Phpmyadmin (4.8.3) Apache Y 6.5 Y G# ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ - - - -

6.5

21. Sql inject in admin login Webapp Y 9.8 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

22. Sql inject in customer login Webapp Y 9.8 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

23. Disable password retry limit Webapp Y 5.3 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

24. Allow passwords with len <8 Webapp Y 5.3 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

25. Javascript source integrity check Webapp Y 9.8 Y ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ - - - -

26. Don’t hide program crashes Webapp Y 6.5 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

27. Implant XSS Webapp Y 6.1 Y ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

28. Implant CSRF Webapp Y 8.8 Y G# ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ - - - -

6.6

29. Extraction of server info. Apache Y 5.3 Y G# ✓ # # # # # # # # - - - -

30. Browsable web directories Apache Y 7.5 Y G# ✓ G# ✓ G# ✓ G# ✓ G# ✓ - - - -

31. HTTP TRACE/TRACK enabled Apache Y 4.3 Y G# ✓ G# ✓ ✓ G# ✓ ✓ - - - -

32. phpinfo() statement is enabled Apache Y 5.3 Y G# ✓ G# ✓ # # ✓ ✗ ✗ - - - -

33. Missing security headers in HTTP Apache Y 6.1 Y G# ✓ G# ✓ G# ✓ # # ✗ ✗ - - - -

8.4
34. Store unsalted customer passwords Webapp N N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

35. Store plaintext passwords Webapp N N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Baseline: #Vul. Detected (Total detectable: 29) 21 - 16 - 17 - 16 - 7 - - - - -

Certified: #Vul. Remaining (#Vul. detected, but no need to fix) - 7(0) - 15(3) - 18(7) - 20(7) - 25(4) - - - -

the PCI scanning, iii) fix all the vulnerabilities that the scanner man-

dates to fix in order to be PCI DSS compliant, iv) run the scanning

again, and v) record the certified version of the testbed.

4.1 Comparison of Scanner Performance

We found that the security scanning capabilities vary significantly

across scanners, in terms of i) the vulnerabilities they can detect

and ii) the vulnerabilities they require one to fix in order to pass

the certification process. Once passed, the website becomes PCI

DSS compliant. The experimental results are presented in Table 3.

Scanner2. Scanner2 is the most effective PCI scanner in our evalua-

tion, and successfully detected 21 out of the 29 externally detectable

cases. The most important case that Scanner2 missed is the use of

HTTP protocol to transmit sensitive information (test case 7). We

fixed 21 vulnerabilities in our testbed to become PCI compliant in

Scanner2. Most of the fixes are intuitive, except fixing Javascript

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

487

source integrity checking (Case 25) and CSRF (Case 28). We added

Javascript integrity checking for scripts that are loaded from exter-

nal sources (Case 25). We used a dynamic instrumentation based

plugin to protect OpenCart against CSRF attacks (Case 28). This plu-

gin instruments code for generating and checking of CSRF tokens

in OpenCart forms. Sometimes, fixing one vulnerability effectively

eliminates another vulnerability that Scanner2 fails to detect. For

example, Scanner2 did not detect default usernames and passwords

for Phpmyadmin (Case 6); however, this vulnerability no longer

exists after we disable the remote access to Phpmyadmin (Case 4).

Scanner5. In the baseline test (i.e., when all the vulnerabilities

were in place), Scanner5 detected 16 out of the 29 cases. To obtain

a Scanner5 compliant version, we had to fix 13 vulnerabilities. Two

of the vulnerabilities (Test cases 5 and 17) are fixed as a side effect

of fixing other vulnerabilities (Test cases 2 and 12). Scanner5 failed

to report the use of a certificate with the wrong hostname, which

is a serious vulnerability exploitable by hackers to launch man-

in-the-middle attacks. Scanner5 did not report the use of HTTP

to transmit sensitive information (i.e., login and register forms in

rwycart). Interestingly, Scanner5 detected the use of HTTP to log

on to PhpMyAdmin. In addition, Scanner5 did not report the use of

scripts from external sources (Case 25).

Scanner1 and Scanner4. Scanner4 uses Scanner1’s scanning in-

frastructure for ASV scanning. So we present the experimental

results of both scanners under the same column. Scanner1 detects

17 vulnerabilities. However, it only requires fixing 10 of them to be

PCI DSS compliant. Some of the high and medium severity vulnera-

bilities are not required to fix, including remotely accessible Mysql

(Case 2), certificates with wrong hostnames (Case 15), and missing

security headers (Case 33). The vulnerability of weak hashing in

SSL/TLS certificates (Case 17) was fixed as a side effect of using a

real certificate from Let’s Encrypt (Case 12).

Scanner6 and Scanner3. Scanner6 and Scanner3 are not on the

approved scanning vendors (ASVs) list [20] provided by the PCI

council. Compared with other approved scanners, they detected a

fewer number of vulnerabilities. Scanner6 detected 16 vulnerabili-

ties, whereas Scanner3 detected 7. We fixed 9 of the vulnerabilities

for Scanner6 and 3 for Scanner3 in order to be compliant. Both Scan-

ner6 and Scanner3 detected remotely accessible Mysql (Case 2), but

do not require us to fix them. Scanner3 missed all the SSL/TLS and

certificate related vulnerabilities (Test cases 12-18), while Scanner6

detected most of them. However, Scanner6 did not require us to

fix certificates with wrong hostnames (Test case 15). We cannot

conclude that unapproved scanners perform worse than approved

scanners, due to the small sample size.

ACase Study of False Positives. During our experiment, we find

Scanner2 produced a false positive under the SQL injection test.

Scanner2 recently incorporated an experimental module to find

blind SQL detection, by sending specially crafted parameters to

the web server. If the server returns different responses, then it

determines that the server has accepted and processed the parame-

ter (a.k.a vulnerable). However, this detection procedure fails on

a common e-commerce scenario: supporting multiple currencies.

OpenCart allows users to select the currency for a product. If a

currency is clicked, it updates the currency of the current page. The

server records all the parameters of the current page under a hid-

den field so that it can recreate the page later (Listing 1). Note that

Scanner2’s specially-crafted parameters are also recorded, which

makes Scanner2 believe that there exists a difference in the output

under different values of the parameter, which is actually a false

positive. Nevertheless, we fixed it by changing the BuggyCart

code to be certified by Scanner2.

Listing 1: The difference in the output after injecting a pa-

rameter named name with an empty value łž vs. łyyž.

< input type= " hidden " name= " r e d i r e c t "

value= " h t t p : / /www. rwycar t . com / up load

/ index . php ? . . . & amp ; p r odu c t _ i d =49& ; name= " / >

−−−−−−−− vs −−−−−−−−

< input type= " hidden " name= " r e d i r e c t "

value= " h t t p : / /www. rwycar t . com / up load

/ index . php ? . . . & amp ; p r odu c t _ i d =49& ; name=yy " / >

Network Traffic Analysis. We collected the incoming network

requests from each of the scanners using the access log of our

testbed. During the baseline experiment, Scanner5, Scanner6 and

Scanner3 sent 23,912, 39,836, and 31,583 requests, respectively and

finished within an hour. Scanner4 and Scanner1 sent 147,038 re-

quests and took more than 3 hours to finish. Scanner2 sent 64,033

requests within 2.5 hours. The reason why we received such a

high traffic volume is that the PCI scanners were attempting to

detect vulnerabilities such as XSS, SQL injection that require in-

tensive URL fuzzing, crawling and parameter manipulations. This

confirms that the PCI scanners have at least attempted to detect

such vulnerabilities but were just unsuccessful.

4.2 Impacts of Premature Certification

Some scanners choose to simply report vulnerabilities without

marking the e-commerce website as non-compliant. Below, we

discuss the security consequences of premature certifications. Some

of the incomplete scanning and premature certification issues can

be prevented, if the scanners follow the ASV guidelines [19].

Network Security Threats.According to the ASV scanning guide-

line, SSL/TLS vulnerabilities (Test cases 12ś17) should lead to auto-

matic failure of certification, which is clearly necessary due to the

man-in-the-middle threats. Only Scanner2 detected all these cases.

Scanner3 does not detect any of these SSL/TLS vulnerabilities. In

addition, a website should be marked as non-compliant if sensitive

information is communicated over HTTP (Test case 7). However,

none of the ASV scanners detected this issue in our testbed. This

vulnerability can be avoided by configuring the server to automati-

cally redirect all the HTTP traffic to HTTPS. Because none of the 6

scanners detected this vulnerability, it is likely that this HTTP issue

exists on real-world e-commerce websites. Our later evaluation on

1,203 websites that process online payment shows 169 of them do

not redirect their HTTP traffic to HTTPS (Section 5).

Our Test case 2 embeds a database access vulnerability, allowing

the database to be accessible from the Internet. All the scanners

detected this vulnerability. However, only Scanner2 and Scanner5

mark this issue as an automatic failure (i.e., non-compliant). The

other scanners report it as łlow/informationž, not as a required

fix, despite the ASV scanning guideline [19] recommends that to

be marked as non-compliant. Our evaluation later on websites

that accept payment card transactions shows that 59 out of 1,203

websites opened the Mysql port (3306) to the Internet (Section 5).

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

488

System Security Threats. The ASV scanning guideline [19] sug-

gests to test and report vulnerable remote access software. 4 out of

the 6 scanners detected vulnerable OpenSSH software (Test case 19).

Under Test case 20, only Scanner2 detected vulnerable phpmyad-

min, while others failed. Although all scanners noticed the Test

case 29 (extracted server information), only Scanner2 required a fix

for compliance. The ASV scanning guideline [19] also recommends

reporting automatic failure if browsable web directories are found

(Test case 30). All scanners detected this vulnerability. Scanner6

detected missing security headers (Test case 33), but did not ask us

to fix it, while Scanner3 failed to detect it.

Web Application Threats. The scanners’ performance is partic-

ularly weak for this category. Out of the 8 test cases, only 2 were

detected by Scanner2 (tampered Javascript and CSRF). None of the

cases was detected by other PCI scanners.

4.3 Evaluation of Website Scanners

The above results suggest that some web application vulnerabilities

are difficult to detect. The follow-up question is, can specialized

website scanners detect these vulnerabilities? To answer this ques-

tion, we ran four website scanners on our BuggyCart testbed,

including two commercial ones (from Scanner2 and Scanner5) and

two open source scanners (w3af [4] and ZAP [2]). w3af and ZAP

are state-of-the-art open source web scanners, are actively being

maintained and are often used in academic research [49, 50, 67].

The two commercial web scanners are from reputable companies.

Scanner2W and Scanner2 are from the same company, where the

website scanner is marketed as a different product from PCI scanner.

It is the same for Scanner5W and Scanner5.

We conducted the baseline test for the four website scanners.

Note that these web scanners do not produce certificates. The re-

sults are shown in the last four columns of Table 3. Since they are

website scanners, we only expect them to cover web application vul-

nerabilities (Test case 7, 21, 22, 23, 24, 26, 27). Unfortunately, none

of the commercial scanners detect these web application vulnera-

bilities. W3af reported the use of HTTP protocol to communicate

sensitive information (case 7), but missed other web application

vulnerabilities. ZAP detected the SQL injection vulnerability in

the customer login page (case 22), but missed the SQL injection

vulnerability in the admin login page (case 21). Noticeably, ZAP

also missed the XSS vulnerability we implanted (case 27).

Summary of Testbed Findings. The detection capabilities vary

significantly across scanners. Our experiments show that 5 out of

6 PCI scanners are not compliant with the ASV scanning guide-

lines [19] by ignoring detected vulnerabilities and not making them

łautomatic failuresž. Most of the common web application vulnera-

bilities (e.g., SQL injection, XSS, CSRF) are not detected by the 6 PCI

scanners (only Scanner2 detected CSRF), despite the requirements

of the PCI guidelines. Out of the 4 website scanners, only ZAP

detected one of the two SQL injection cases.

Admittedly, black-box detection of vulnerabilities such as XSS

and SQL injection is difficult. Typical reasons for missed detection

are i) failure to locate the page due to incomplete discovery and/or

ii) that detection heuristics are limited or easily bypassed. In our

testbed, SQL injection vulnerabilities (21, 22) are placed in the login

pages. CSRF vulnerabilities are present in all forms. The scanners

we tested used web crawling with URL fuzzing to detect hidden

pages, URLs, and functions. Often, we are unable to pinpoint the

exact reasons why the tools fail in these cases. Novel detection

techniques, such as guided fuzzing [49] and taint tracking [73],

have been proposed by the research community. Future work is

needed to evaluate their applicability in the specific PCI context.

5 Measurement of Compliant Websites

The alarming security deficiencies in how PCI scanners conduct the

compliance certification motivate us to ask the following questions:

How secure are e-commerce websites? What are the main measurable

vulnerabilities in e-commerce websites?As such we designed another

set of real-world experiments where we aim to measure the security

of e-commerce websites with respect to the PCI DSS guideline. To

do so, we need to address several technical questions.

What Tools to Use? The key enabler of this measurement is a new

tool we developed named PciCheckerLite. We use basic Linux

tools (e.g., nc, openssl) and Java net URL APIs to implement the

system. Below, we focus on the key design concepts of PciCheck-

erLite in order to work with live websites.

What Security Properties to Check? A key requirement of this

experiment tomake sure that we do not disrupt or negatively impact

websites being tested. Out of the 29 externally verifiable cases in Ta-

ble 3, we choose a subset of 17 cases for this experiment, as shown

in Table 5. The sole reason of selecting these cases for PciCheck-

erLite is that we could implement these tests in a non-intrusive

manner, leaving a minimum footprint, i.e., having a minimum im-

pact on the servers. We categorize these cases to high, medium

and low severity based on i) the attacker’s gain and ii) the attack

difficulty. Cases that are immediately exploitable by any arbitrary

attacker to cause large damages are highly severe, for example, the

use of default passwords (Test case 5), insecure communications

(Test cases 7, 12, 13, 16, 17), vulnerable remote access software (Test

case 19), browsable web directories (Test case 22), and supporting

HTTP TRACE method (Test case 23). Cases that substantially ben-

efit any arbitrary attacker but require some efforts to exploit are

marked as medium severity, e.g., test cases 2, 14, 15, 25, 29, and 33.

For example, scripts loaded from external sources can steal payment

card data (Test case 25), but attackers need to craft the malicious

scripts [32]. Low-risk issues are marked as low severity (Test case 3,

18). The categories are consistent with Table 3 as high and medium

severity cases correspond to łmust-fixž vulnerabilities. The two

low-severity cases are not required to be fixed to be PCI-compliant.

Implementing PciCheckerLite.Our goal is to minimize the num-

ber of requests that PciCheckerLite issues per test case, while

maximizing the test case coverage. It involves a collection of light-

weight heuristics that merge multiple tests into a single request.

For example, for most of the HTTP-related tests, we reuse a single

response from the server. Test cases 25, 29, and 33 are covered and

resolved by one single HTTP request to retrieve the main page and

analyzing the response header. Test cases 12ś18 are covered by

one certificate fetching. For case 30 (browsable directories enabled)

PciCheckerLite conducts a code-guided probe and avoids crawl-

ing web pages. It discovers file paths in the code of the landing

page and then probes the server with requests for accessing path

prefixes. The implementation details are given in the Appendix.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

489

Table 4: Number of e-commerce websites that have at least

one vulnerability and those that have at least one łmust-fixž

vulnerability. In total, 1,203 sites are tested including 810

sites chosen from different web categories, and 393 sites cho-

sen from different Alexa ranking ranges.

E-commerce Websites # of Vulnerable Websites

Must-fix Vul. All Vul.

Category (810)

Business (122) 106 113

Shopping (163) 135 143

Arts (78) 66 76

Adults (65) 61 65

Recreation (84) 70 75

Computer (57) 53 56

Games (42) 38 42

Health (60) 54 55

Home (102) 82 93

Kids & Teens (37) 31 36

Ranking (393)
Top (288) 235 277

Bottom (105) 100 104

Total (1,203) 1,031 (86%) 1,135 (94%)

How to Determine Whether a Website is PCI Compliant? It

is not easy to directly confirm whether a website is DSS compli-

ant or not, unless the website actively advertises this information.

While some cloud and service providers (e.g., Google Cloud [39],

Amazon Connect [12], Shopify [38], and Akamai [37]) advertise

their PCI compliance status, not all of them disclose such informa-

tion. However, as e-commerce websites need to show their DSS

compliance in order to work with acquirer banks (described in Sec-

tion 2), it is reasonable to assume that most websites we evaluated

have successfully passed the external scanning.

Website Selection.We use two different ways to select websites

to increase diversity. First, we downloaded 2,000 Alexa top websites

under 10 categories (200 websites per category) to observe security

compliance differences based on categories. In Table 4, we show the

category-wise breakdown. Among them, we manually identified

810 websites that make payment card transactions. This step is time-

consuming and usually requires manually visiting multiple pages

(e.g., one needs to visit multiple pages to get to the payment page

on nytimes.com). Second, to cover websites of different popularity

levels, we further select the top 500 and bottom 500 websites (1,000

in total) fromAlexa top 1millionwebsite list.We found 288websites

from the top list and 105 websites from the bottom list that accept

payment card information (and do not overlap with the previous

811 websites). In total, 1,203 payment-cards-taking websites are

selected for scanning by PciCheckerLite.

Findings of E-commerce Website Compliance. 68 websites

fully passed our PciCheckerLite test, including the aforemen-

tioned cloud providers (Google Cloud, Amazon Connect, Shopify).

Our results also confirm that a number of actively operating web-

sites do not comply with the PCI Data Security Standard. As shown

in Table 4, out of the 1,203 websites, 1,135 (94%) have at least one

vulnerability. More importantly, 1,031 (86%) sites have at least one

vulnerability that belong to the łmust-fixž vulnerabilities which

should have disqualified them as non-compliant. Among them, 520

(43%) sites even have two or more must-fix vulnerabilities.

Then as shown in Table 5, the shopping category has the lowest

percentage (87%) of vulnerable websites, while all other categories

have a percentage of over 90%. We found several types of high-

risk and medium-risk vulnerabilities, including leaving the Mysql

port (3306) open, using self-signed or expired certificates, wrong

hostnames in the certificate, enabling HTTP TRACE method, and

using vulnerable OpenSSH (7.5 or earlier). Supporting TLS v1.0

(low-risk level) is another most common vulnerability we detected

(Test case 18), likely due to the need for backward compatibility.

SSLv3.0 and TLSv1.0 are known to havemultiple man-in-the-middle

vulnerabilities [40] and the PCI standard recommends that all web

servers and clients must transition to TLSv1.1 or above.

The vulnerabilities in these websites suggest the PCI scanners

used by the websites are inadequate and failed to detect the vulner-

abilities during the certification scans. Another possibility is that

the acquiring banks did not sufficiently examine the merchants’

quarterly security reports, allowing merchants to operate without

sending adequate security reports to banks as required.

Vulnerable Websites. Below, we highlight some interesting find-

ings without explicitly mentioning the names of vulnerable sites.

Mysql open ports. 59 websites expose the MySql service for remote

access. For example, two Slovenian websites that sell healthcare

products and car components and a Russian website that sells fur-

naces and stoves all have this vulnerability. We did not detect any

use of default user (root) or no password.

Insecure certificates (self-signed, expired, and insecure modulus). The

use of certificates with wrong hostnames (Figure 3 in Appendix) is

an issue that appears in 3% of the websites. For some websites, the

root cause is not properly configuring HTTPS. For example, one

website accepts payment for donations. Since it does not correctly

set up HTTPS, it uses a default certificate5 for HTTPS (Figure 4 in

Appendix). In some cases, the websites use HTTPS for payment

only while other sensitive content (i.e., items and the cart) are

still sent over HTTP. Because the original domain is not properly

configured to use HTTPS, it presents the default expired certificate

(Figure 5 in Appendix).

Comparisonwith ExistingTool. Finally, we experimentally com-

pared PciCheckerLite with the state-of-the-art web scanner. Note

that existing scanners typically have aggressive pentesting com-

ponents that are not suitable to test live websites. For this experi-

ment, we choose w3af and have to adapt it to a łnon-intrusive low-

interactive" version. More specifically, we modify w3af to 1) block

intrusive tests (e.g., XSS, SQL injections), 2) disable URL fuzzing,

and 3) disable the liveliness testing. For scalability, we also utilized

w3af’s programmable APIs (w3af_console) to discard the graphic

user interface. We call this version as customized w3af. For com-

parison, we ran PciCheckerLite and the customized w3af on 100

websites random from the 1203 sites (in Table 5). For reference, we

also ran both tools on our BuggyCart.

The results are shown in Table 6. First, we observe that our

system outperforms w3af on Buggycart by detecting all the vulner-

abilities. Second, on the 100 real-world websites, our system also

detected more truly vulnerable websites. Even though w3af flagged

more websites (e.g., Test case 7, 29), manually analysis shows that

a large portion of the alerts are false positives. For example, under

5A self-signed certificate comes with the webserver installation.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

490

Table 5: Testing results on 1,203 real-world websites that accept payment card transactions as of May 3, 2019. We reuse the

index numbers of the test cases from Table 3.

Reqs. Test Cases Severity
Category (810) Ranking (393) Total (1,203)

Biz.

(122)

Shop.

(163)

Arts

(78)

Adlt.

(65)

Recr.

(84)

Comp.

(57)

Game.

(42)

Hlth.

(60)

Home.

(102)

Kids.

(37)

Top

(288)

Btm.

(105)

1.2
2. Mysql port (3306) detection Medium 3 6 4 2 6 2 3 2 4 0 0 27 59 (5%)

3. OpenSSH available Low 6 15 11 4 13 6 7 8 12 1 6 27 116 (10%)

2.1 5. Default Mysql user/passwd High 0 0 0 0 0 0 0 0 0 0 0 0 0 (0%)

2.3 7. Sensitive info over HTTP High 12 10 12 10 17 10 8 6 10 5 47 22 169 (14%)

4.1

12. Selfsigned cert presented High 0 0 3 0 1 0 0 1 1 0 0 3 9 (1%)

13. Weak Cipher Supported High 0 0 0 0 0 0 0 0 0 0 0 0 0 (0%)

14. Expired cert presented Medium 0 0 2 0 2 0 0 1 0 0 0 2 7 (1%)

15. Wrong hostname in cert Medium 3 1 3 0 6 2 0 2 4 1 0 10 32 (3%)

16. Insecure Modulus High 0 0 0 0 0 0 0 0 0 0 0 1 1 (0.1%)

17. Weak hash in cert High 0 0 0 0 0 0 0 0 0 0 0 0 0 (0%)

18. TLSv1.0 Supported Low 67 73 53 42 41 40 28 30 67 16 216 71 744 (62%)

6.1 19. OpenSSH vulnerable High 6 14 11 4 13 6 6 8 11 1 6 26 112 (9%)

6.5 25. Missing script integrity check Medium 92 109 54 44 44 32 27 42 66 21 154 75 760 (63%)

6.6

29. Server Info available Medium 26 34 17 17 22 15 17 17 25 11 33 22 256 (21%)

30. Browsable Dir Enabled High 0 0 0 0 0 0 0 0 0 0 0 0 0 (0%)

31. HTTP TRACE supported High 6 4 3 3 2 5 2 2 6 0 4 6 43 (4%)

33. Security Headers missing Medium 18 38 9 12 14 21 9 7 14 7 114 13 276 (23%)

Table 6: Comparison between PciCheckerLite and the

customized w3af on 100 randomly chosen websites and the

Buggycart testbed.We report the number of vulnerable web-

sites detected and the false positives (FP) among them.

Vulnerabilities
100 Random websites Buggycart

Ours (FP) w3af (FP) Ours w3af

2. Mysql port (3306) detection 5 (0) 0 (0) ✓ ✗

3. OpenSSH available 10 (0) 0 (0) ✓ ✗

5. Default Mysql user/pass 0 (0) 0 (0) ✓ ✗

7. Sensitive info over HTTP 12 (0) 27 (17) ✓ ✓

12. Selfsigned cert presented 2 (0) 2 (0) ✓ ✓

13. Weak Cipher Supported 0 (0) 0 (0) ✓ ✗

14. Expired cert presented 0 (0) 3 (3) ✓ ✓

15. Wrong hostname in cert 3 (0) 2 (1) ✓ ✓

16. Insecure Modulus 0 (0) 0 (0) ✓ ✗

17. Weak hash in cert 0 (0) 0 (0) ✓ ✗

18. TLSv1.0 Supported 63 (0) 0 (0) ✓ ✗

19. OpenSSH vulnerable 10 (0) 0 (0) ✓ ✗

25. Missing script integrity check 72 (1) 55 (10) ✓ ✓

29. Server Info available 19 (0) 81 (62) ✓ ✓

30. Browsable Dir Enabled 0 (0) 0 (0) ✓ ✗

31. HTTP TRACE supported 6 (0) 6 (6) ✓ ✓

33. Security Headers missing 30 (0) 0 (0) ✓ ✗

Test case 7, w3af flags a website if Port 80 is open, while PciCheck-

erLite reports a website only if the request is not automatically

redirected to Port 443 (HTTPS). This design of w3af produces 17

false positives. Under Test case 15, w3af flags a website that uses

the certificate for its subdomains (which is not a violation). For Test

case 29, w3af flags websites that expose non-critical information

whereas we only flag the exposure of exploitable information (e.g.,

server and framework version numbers). Note that among all vul-

nerabilities, we only have one FP under Test case 25. This website

is flagged by PciCheckerLite for loading Javascript from a third-

party domain without an integrity check. Manually analysis shows

that the third-party domain and the original website are actually

owned by the same organization. Technically, such information is

beyond what PciCheckerLite can collect.

6 Disclosure and Discussion

Responsible Disclosure. We have fully disclosed our findings to

the PCI Security Standard Council. In May 2019, we shared our

paper with the PCI SSC, and successfully got in touch with an ex-

perienced member of the Security Council. Through productive

exchanges with them, we gained useful insights. i) The Security

Council shared a copy of our paper to the dedicated companies

that host the PCI certification testbeds, who are now aware of our

findings; ii) Preventing scanners from gaming the test is one of their

priorities, for example, by constantly updating their testbeds and

changing the tests; iii) Low interaction constraints make it difficult

to test some vulnerabilities externally (which we also experienced

and aimed to address in our work); iv) The Security Council rou-

tinely removes scanners from the ASV list or warns scanners based

on the feedback sent by ASV consumers; v) Their testbeds exclude

vulnerabilities whose CVSS scores are lower than 4; vi) Payment

brands and acquirer banks need efficient (and automatic) solutions

to inspect PCI DSS compliance reports. Insights ii), iii), and vi)

present interesting research opportunities. In addition, we are in

the process of contacting vulnerable websites. Some notifications

have been sent out to those that failed test case 2 (open Mysql port)

or 19 (vulnerable OpenSSH). Incidentally, we found a few websites

have already fixed their problems, for example Netflix upgraded

the vulnerable SSH-2.0-OpenSSH_7.2p2 (current Netflix.com server

does not show a version number).

Is Improving PCI Certification a Practical Task? From the eco-

nomics point of view, the concept of for-profit security certification

companies may seem like an oxymoron. Intuitively, a scanning ven-

dor might make more money if its scanner is less strict, allowing

websites to easily pass the DSS certification test. On the contrary, a

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

491

company offering rigorous certification scanning might lose cus-

tomers when they become frustrated from failing the certification

test. Phenomena with misaligned incentives widely exist in many

security domains (e.g., ATM security, network security) [41]. Fortu-

nately, unlike the decentralized Internet, PCI security is centrally

supervised by the PCI Security Council. Thus, the Council, govern-

ing the process of screening and approving scanner vendors, is a

strong point of quality control. The enforcement can be strength-

ened through technical means. Thus, improving the PCI security

certification, unlike deploying Internet security protocols [69], is a

practical goal that is very reachable in the near future.

Gaming-resistant Self-evolving Testbeds and Open-Source PCI Scan-

ners. A testbed needs to constantly evolve, incorporating new types

of vulnerabilities and relocating existing vulnerabilities over time. A

fixed testbed is undesirable, as scanners may gradually learn about

the test cases and trivially pass the test without conducting a thor-

ough analysis. Automating this process and creating self-evolving

testbeds are interesting open research problems.

Competitive open-source PCI/web scanners from non-profit or-

ganizations could drive up the quality of commercial vendors, forc-

ing the entire scanner industry to catch up, and providing alterna-

tive solutions for merchants to run sanity check on their services.

Currently, there are not many high-quality, open-source and deploy-

able web scanners; w3af and ZAP are among the very few available.

Automate the Workload at Payment Brands and Acquirer Banks.

Payment brands and acquirer banks are the ultimate gatekeepers

in the PCI DSS enforcement chain. Manually screening millions of

scanning reports and questionnaires every quarter is not efficient

(and is likely not being done well in practice). Indeed, our real-world

experiments suggest that the gatekeeping at the acquirer banks

and payment brands appears weak. Thus, automating the report

processing for scalable enforcement is urgently needed.

Scanning vs. Self-assessment Questionnaires. There are four

major types of Self-assessment Questionnaires or SAQs (A toD) [29].

The different SAQs are designed for different types of merchants,

as illustrated in Figure 6 in the Appendix. In SAQs, all the questions

are close ended, i.e., multiple choices. For a vast majority of the

merchants, the current compliance checking largely relies on the

trust of a merchant’s honesty and capability of maintaining a secure

system. This observation is derived from our analysis of the 340

questions in the self-assessment questionnaire (SAQ) D-Mer, which

is an SAQ designed for merchants that process or store cardholder

data. Consequently, it is the most comprehensive questionnaire.

We manually went through all the questions the in Self-

Assessment Questionnaire (SAQ) D-Mer and categorized them into

the five major groups, network security, system security, applica-

tion security, application capability, and company policies. 271 of

the 340 questions fall under the category of company policies and

application capability, where none of them can be automatically

verifiable by an external entity (e.g., ASV/web scanners). Only 31

out of the 69 questions on network, system and application security

are automatically verifiable by a PCI scanner.

Legal Consequences of Cheating in PCI Certification. The

PCI DSS standard is not required by the U.S. federal law. Some state

laws do refer to PCI DSS (e.g., Nevada, Minnesota,Washington) [58],

stating that merchants must be PCI compliant. However, there is

no mentioning about any legal consequences of cheating in the PCI

DSS certification process. Thus, it appears that being untruthful

when filling out the self-assessment questionnaire would not have

any direct legal consequences. The only potential penalty would

be an łafter effectž. For example, a merchant may be fined by the

card brand if a data breach happens due to its non-compliance [3].

Limitations. Our work has a few limitations. First, we only tested

6 PCI scanners and 4 web scanners. Given the high expense to

order PCI and web scanning, it is unlikely that such an experiment

can truly scale up. For PCI scanning, we have tried to increase

the diversity of scanner selection by selecting from different price

ranges. The website scanners are added to further increase diver-

sity. Second, our paper primarily focuses on the PCI compliance

certification of e-commerce websites. Although we did not evaluate

the compliance of banks (which report to card brands), we argue

that it is the same set of the approved PCI scanners that provide

the compliance reports for both merchants and banks. The problem

revealed in our study should be generally applicable. Third, we

did not test vulnerabilities that are not yet covered by the current

Data Security Standards (DSS). Future work can further study the

comprehensiveness of DSS. Finally, in Section 5, we only tested

1,203 e-commerce websites because it requires manual efforts to

verify whether a website accepts payment card information. It is

difficult to automate the verification process since one often needs

to register an account and visit many pages before finding the pay-

ment page. We argue that our experiment already covers websites

from various categories and ranking ranges, which is sufficient to

demonstrate the prevalence of the problem.

7 Related Work

Website Scanning. The detection of web application vulnerabili-

ties has been well studied by researchers [45, 49, 73]. In [45, 74], au-

thors measured the performance of several black-box web scanners

and reported a low detection rate for XSS and SQL injection attacks.

The main challenge is to exhaustively discover various web-app

states by observing the input/output patterns. Duchene et al. [53]

proposed an input fuzzer to detect XSS vulnerabilities. Doupé et

al. [49] proposed to guide fuzzing based on the website’s internal

states. In [64], authors proposed a black-box method to detect logi-

cal flaws using network traffic. In [73], authors used a taint-tracking

based detection of XSS vulnerabilities at the client-side. In [65], au-

thors used dynamic execution trace-based behavioral models to de-

tect CSRF vulnerabilities. Although most defenses against XSS and

SQL inject attacks prescribe input sanitization [44, 57, 59], in [51],

authors proposed an application-agnostic rewrite technique to dif-

ferentiate scripts from other HTML inputs. We argue that similar

research efforts could make a positive impact to the PCI community

by (1) producing and releasing high-quality open-sourced tools;

and (2) customizing a non-intrusive version of the tool for testing

production websites in the PCI DSS context.

Proactive Threat Measurements. Honeypots [62, 66] are useful

to collect empirical data on attackers (or defenders). In [56], authors

measure attack behaviors by deploying vulnerable web servers wait-

ing to compromised. In [63], authors deployed phishing websites to

measure the timeliness of browsers’ blacklist mechanisms. In [48],

authors measure the capability of the web hosting providers to

detect compromised websites by deploying vulnerable websites

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

492

within those web hosting services. Our testbed can be regarded as

a specialized honeypot to assess the capability of PCI scanners.

Physical Card Frauds. Payment card frauds at ATM or point-of-

sale (POS) machines have been studied for decades [42, 43, 47, 52,

61, 70, 71]. Most of these frauds occur due to stealing payment

card information during physical transactions [35, 42], and cloning

magnetic stripe cards [70, 71]. EMV cards are known to be resistant

to card cloning, but are vulnerable to tempered terminals [52],

or due to protocol-level vulnerabilities [61] and implementation

flaws [47]. Recently, researchers proposed mechanisms to detect

magnetic card skimmers [46, 70].

Digital Card Frauds. In the online setting, the danger of using

magnetic-stripe-like transactions is known for years [8, 21]. Various

methods (e.g., 3D-Secure [24], Tokenization framework [13]) have

been proposed to fix it. Unfortunately, 3D-Secure is found to be

inconvenient and easy to break [60]. Tokenization framework offers

a great alternative by replacing original card information with tem-

porary tokens during a transaction. However, card information can

still be stolen during account setup phase at a poorly secured mer-

chant. Other unregulated digital financial services are also reported

to be insecure [68]. In [68], the authors showed that branchless

banking apps that leverage cellular networks to send/receive cashes

are also vulnerable due to flaws such as skipping SSL/TLS certificate

validation, and using insecure cryptographic primitives.

8 Conclusion

Our study shows that the PCI data security standard (PCI DSS) is

comprehensive, but there is a big gap between the specifications and

their real-world enforcement. Our testbed experiments revealed

that the vulnerability screening capabilities of some approved scan-

ning vendors (ASV) are inadequate. 5 of the 6 PCI scanners are not

compliant with the ASV scanning guidelines. All 6 PCI scanners

would certify e-commerce websites that remain vulnerable. Our

measurement on 1,203 e-commerce websites shows that 86% of

the websites have at least one type of vulnerability that should

disqualify them as non-compliant. Our future work is to a design

minimum-footprint black-box scanning method.

9 Acknowledgment

This project was supported in part by NSF grants CNS-1717028,

CNS-1750101 and OAC-1541105, ONR Grant ONR-N00014-17-1-

2498.

References
[1] Common Vulnerability Scoring System Calculator Version 3. https://nvd.nist.

gov/vuln-metrics/cvss/v3-calculator. [Online; accessed 28-Aug-2019].
[2] The owasp zed attack proxy (zap). https://www.zaproxy.org/.
[3] Q15: What are the penalties for non-compliance? https://www.

pcicomplianceguide.org/faq/#15.
[4] W3af. http://w3af.org/.
[5] SQL injection with raw MD5 hashes (leet more ctf 2010 injection 300). http:

//cvk.posthaven.com/sql-injection-with-raw-md5-hashes, 2010.
[6] Payment Card Industry (PCI) Point-to-Point Encryption: Solution Requirements

and Testing Procedures. https://www.pcisecuritystandards.org/documents/P2PE_
v2_r1-1.pdf, 2015.

[7] Payment Card Industry (PCI) Token Service Providers: Additional Security
Requirements and Assessment Procedures for Token Service Providers (EMV
Payment Tokens). https://www.pcisecuritystandards.org/documents/PCI_TSP_
Requirements_v1.pdf, 2015.

[8] All About Fraud: How Crooks Get the CVV. https://krebsonsecurity.com/2016/04/
all-about-fraud-how-crooks-get-the-cvv/, 2016. [Online; accessed 8-Jan-2019].

[9] Payment Card Industry (PCI) Payment Application Data Security Stan-
dard: Requirements and Security Assessment Procedures. https://www.
pcisecuritystandards.org/documents/PA-DSS_v3-2.pdf, 2016.

[10] Payment Card Industry (PCI) PIN Transaction Security (PTS) Hard-
ware Security Module (HSM): Modular Security Requirements.
https://www.pcisecuritystandards.org/documents/PCI_HSM_Security_
Requirements_v3_2016_final.pdf, 2016.

[11] PCI Self-Assessment Questionnaire Instructions and Guidelines. version
3.2. https://www.pcisecuritystandards.org/documents/SAQ-InstrGuidelines-v3_
2.pdf, 2016.

[12] Amazon Connect is Now PCI DSS Compliant. https://aws.amazon.com/
about-aws/whats-new/2017/07/amazon-connect-is-now-pci-dss-compliant/,
2017.

[13] EMV Payment Tokenisation Specification: Technical Framework.
https://www.emvco.com/terms-of-use/?u=/wp-content/uploads/documents/
EMVCo-Payment-Tokenisation-Specification-Technical-Framework-v2.0-1.
pdf, 2017.

[14] Giant equifax data breach: 143 million people could be affected. https://money.
cnn.com/2017/09/07/technology/business/equifax-data-breach/index.html, 2017.

[15] How many e-commerce companies are there? What’s the global e-commerce
market size? http://blog.pipecandy.com/e-commerce-companies-market-size/,
2017.

[16] Payment Card Industry 3-D Secure (PCI 3DS): Security Requirements
and Assessment Procedures for EMV 3-D Secure Core Components: ACS,
DS, and 3DS Server. https://www.pcisecuritystandards.org/documents/
PCI-3DS-Core-Security-Standard-v1.pdf, 2017.

[17] Payment Card Industry (PCI) Card Production and Provisioning: Logical Secu-
rity Requirements. https://www.pcisecuritystandards.org/documents/PCI_Card_
Production_Logical_Security_Requirements_v2.pdf, 2017.

[18] Payment Card Industry (PCI) Card Production and Provisioning: Physical Secu-
rity Requirements. https://www.pcisecuritystandards.org/documents/PCI_Card_
Production_Physical_Security_Requirements_v2.pdf, 2017.

[19] Payment Card Industry (PCI) Data Security Standard Approved Scanning Vendor.
program guide. version 3.1. https://www.pcisecuritystandards.org/documents/
ASV_Program_Guide_v3.1.pdf, 2017.

[20] Approved scanning vendors. https://www.pcisecuritystandards.org/assessors_
and_solutions/approved_scanning_vendors, 2018.

[21] Card Fraud on the Rise, Despite National EMV Adoption. https://geminiadvisory.
io/card-fraud-on-the-rise/, 2018. [Online; accessed 8-Jan-2019].

[22] Cardconnect: A new wave of payment processing. https://cardconnect.com/,
2018.

[23] A Comprehensive Guide to PCI DSS Merchant Levels. https://semafone.com/
blog/a-comprehensive-guide-to-pci-dss-merchant-levels/, 2018.

[24] EMV 3-D Secure: Protocol and Core Functions Specification. https://www.emvco.
com/wp-content/uploads/documents/EMVCo_3DS_Spec_v220_122018.pdf, 2018.

[25] Let’s Encrypt. https://letsencrypt.org/, 2018.
[26] Opencart. https://www.opencart.com/, 2018.
[27] Payment Card Industry (PCI) Data Security Standard: Requirements and security

assessment procedures. https://www.pcisecuritystandards.org/documents/PCI_
DSS_v3-2-1.pdf, 2018.

[28] Payment Card Industry (PCI) Data Security Standard Self-Assessment Question-
naire D and Attestation of Compliance for Merchants: All other SAQ-Eligible
Merchants. https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2_
1-SAQ-D_Merchant.pdf?agreement=true&time=1557603304233, 2018.

[29] Payment Card Industry (PCI) Data Security Standard Self-Assessment Question-
naire: Instructions and Guidelines. https://finance.ubc.ca/sites/finserv.ubc.ca/
files/banking-leases/PCI_DSS_SAQ_Instructions_Guidelines.pdf, 2018.

[30] Payment Card Industry (PCI) PIN Transaction Security (PTS) Point of Interaction
(POI): Modular Security Requirements. https://www.pcisecuritystandards.org/
documents/PCI_PTS_POI_SRs_v5-1.pdf, 2018.

[31] Payment Card Industry (PCI) Software-based PIN Entry on COTS: Security Re-
quirements. https://www.pcisecuritystandards.org/documents/SPoC_Security_
_Requirements_v1.0.pdf, 2018.

[32] Who’s In Your Online Shopping Cart? https://krebsonsecurity.com/2018/11/
whos-in-your-online-shopping-cart/, 2018.

[33] BlueCrypt: Cryptographic Key Length Recommendation. https://www.keylength.
com/en/4/, 2019.

[34] DB-Engines Ranking. https://db-engines.com/en/ranking, 2019.
[35] Insert Skimmer + Camera Cover PIN Stealer. https://krebsonsecurity.com/2019/

03/insert-skimmer-camera-cover-pin-stealer/, 2019. [Online; accessed 20-Mar-
2019].

[36] netcat. https://en.wikipedia.org/wiki/Netcat, 2019.
[37] PCI DSS Compliance. https://www.akamai.com/us/en/resources/

pci-dss-compliance.jsp, 2019.
[38] Shopify meets all 6 categories of PCI standards. https://www.shopify.ca/security/

pci-compliant, 2019.
[39] Standards, Regulations & Certifications. https://cloud.google.com/security/

compliance/pci-dss/, 2019.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

493

[40] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halder-

man, J. A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot,

B., Wustrow, E., Béguelin, S. Z., and Zimmermann, P. Imperfect Forward
Secrecy: How Diffie-Hellman Fails in Practice. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2015).

[41] Anderson, R., and Moore, T. The economics of information security. Science
314, 5799 (2006), 610ś613.

[42] Anderson, R. J. Why cryptosystems fail. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS) (1993).

[43] Anderson, R. J., and Murdoch, S. J. EMV: why payment systems fail. Commun.
ACM 57, 6 (2014), 24ś28.

[44] Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel,

C., and Vigna, G. Saner: Composing static and dynamic analysis to validate
sanitization in web applications. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P) (2008).

[45] Bau, J., Bursztein, E., Gupta, D., and Mitchell, J. C. State of the art: Auto-
mated black-box web application vulnerability testing. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P) (2010).

[46] Bhaskar, N., Bland, M., Levchenko, K., and Schulman, A. Please pay inside:
Evaluating bluetooth-based detection of gas pump skimmers. In Proceedings of
the 28th USENIX Security Symposium (USENIX SEC) (2019).

[47] Bond, M., Choudary, O., Murdoch, S. J., Skorobogatov, S. P., and Anderson,

R. J. Chip and skim: Cloning EMV cards with the pre-play attack. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P) (2014).

[48] Canali, D., Balzarotti, D., and Francillon, A. The role of web hosting
providers in detecting compromised websites. In Proceedings of the International
World Wide Web Conference (WWW) (2013).

[49] Doupé, A., Cavedon, L., Kruegel, C., and Vigna, G. Enemy of the State: A
State-Aware Black-Box Web Vulnerability Scanner. In Proceedings of the USENIX
Security Symposium (USENIX SEC) (2012).

[50] Doupé, A., Cova, M., and Vigna, G. Why Johnny Can’t Pentest: An Analysis
of Black-Box Web Vulnerability Scanners. In Proceedings of the Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA) (2010).

[51] Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C., and Vigna,

G. dedacota: toward preventing server-side XSS via automatic code and data
separation. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2013).

[52] Drimer, S., and Murdoch, S. J. Keep your enemies close: Distance bounding
against smartcard relay attacks. In Proceedings of the USENIX Security Symposium
(USENIX SEC) (2007).

[53] Duchene, F., Rawat, S., Richier, J., and Groz, R. Kameleonfuzz: evolutionary
fuzzing for black-box XSS detection. In Proceedings of the ACM Conference on
Data and Application Security and Privacy (CODASPY) (2014).

[54] Gamero-Garrido, A., Savage, S., Levchenko, K., and Snoeren, A. C. Quantify-
ing the pressure of legal risks on third-party vulnerability research. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security (CCS)
(2017).

[55] Grossman, J. Cross site tracing (xst). https://www.cgisecurity.com/
whitehat-mirror/WH-WhitePaper_XST_ebook.pdf.

[56] Han, X., Kheir, N., and Balzarotti, D. Phisheye: Live monitoring of sandboxed
phishing kits. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2016).

[57] Hooimeijer, P., Livshits, B., Molnar, D., Saxena, P., and Veanes, M. Fast
and precise sanitizer analysis with BEK. In Proceedings of the USENIX Security
Symposium (USENIX SEC) (2011).

[58] Kemp, T. Buckle up with Cybersecurity ... It’s the law. https://www.forbes.
com/sites/tomkemp/2012/02/01/buckle-up-with-cybersecurity-its-the-law/
#5d83d3a31d72, 2012.

[59] Livshits, B., and Chong, S. Towards fully automatic placement of security sani-
tizers and declassifiers. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL) (2013).

[60] Murdoch, S. J., and Anderson, R. J. Verified by visa and mastercard securecode:
Or, hownot to design authentication. In Proceedings of the International Conference
on Financial Cryptography and Data Security (FC) (2010).

[61] Murdoch, S. J., Drimer, S., Anderson, R. J., and Bond, M. Chip and PIN is
broken. In Proceedings of the IEEE Symposium on Security and Privacy (S&P)
(2010).

[62] Nazario, J. PhoneyC: A virtual client honeypot. In Proceedings of the USENIX
Workshop on Large-Scale Exploits and Emergent Threats (LEET) (2009).

[63] Oest, A., Safaei, Y., Doupé, A., Ahn, G.-J., Wardman, B., and Tyers, K. Phish-
farm: A scalable framework for measuring the effectiveness of evasion techniques
against browser phishing blacklists. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P) (2019).

[64] Pellegrino, G., and Balzarotti, D. Toward black-box detection of logic flaws
in web applications. In Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2014).

[65] Pellegrino, G., Johns, M., Koch, S., Backes, M., and Rossow, C. Deemon:
Detecting CSRF with dynamic analysis and property graphs. In Proceedings of

the ACM SIGSAC Conference on Computer and Communications Security (CCS)
(2017).

[66] Provos, N. A virtual honeypot framework. In Proceedings of the 13th USENIX
Security Symposium (USENIX SEC) (2004).

[67] Ramos, S. H., Villalba, M. T., and Lacuesta, R. MQTT Security: A Novel
Fuzzing Approach. Wireless Communications and Mobile Computing 2018 (2018).

[68] Reaves, B., Scaife, N., Bates, A., Traynor, P., and Butler, K. R. B. Mo(bile)
money, mo(bile) problems: Analysis of branchless banking applications in the
developing world. In Proceedings of the USENIX Security Symposium (USENIX
SEC) (2015).

[69] Routing security for policymakers: An Internet society white paper, October
2018. Internet Society. https://www.manrs.org/wp-content/uploads/2018/10/
Routing-Security-for-Policymakers-EN.pdf.

[70] Scaife, N., Peeters, C., and Traynor, P. Fear the Reaper: Characterization
and Fast Detection of Card Skimmers. In Proceedings of the USENIX Security
Symposium (USENIX SEC) (2018).

[71] Scaife, N., Peeters, C., Velez, C., Zhao, H., Traynor, P., and Arnold, D. P.

The cards aren’t alright: Detecting counterfeit gift cards using encoding jitter. In
Proceedings of the IEEE Symposium on Security and Privacy, (S&P) (2018).

[72] Shu, X., Tian, K., Ciambrone, A., and Yao, D. Breaking the target: An analysis
of target data breach and lessons learned. CoRR abs/1701.04940 (2017).

[73] Steffens, M., Rossow, C., Johns, M., and Stock, B. Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting in the
wild. In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019 (2019).

[74] Vieira, M., Antunes, N., and Madeira, H. Using web security scanners to
detect vulnerabilities in web services. In Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) (2009).

Appendix

Figure 3: An example of wrong hostname in the certificate.

The domain (a*****.***) uses a certificate that is issued for a

different domain name (*.n*****.***).

Figure 4: Self-signed certificate used by (r*****.***), a website

that accepts payment cards for donations.

Implementation Details of PciCheckerLite

PciCheckerLite follows a series of rules for vulnerability testing.

The index of the rules matches with the testing cases discussed in

the paper. As described in the paper, we only focus on a subset of

test cases that do not disrupt or cause any negative impact to the

remote servers (for ethical considerations). The implementation

details are as follows.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

494

Figure 5: (u*****.***) uses expired certificates by default and

redirects users to a secure sub-domain with proper certifi-

cate during payment.

Self-assessment questionaire A

(SAQ A)

Self-assessment questionaire D-Mer

(SAQ D-Mer)

Self-assessment questionaire A-EP

(SAQ A-EP)

Doesn't Touch

Cardholder Data

Doesn't Store

Cardholder Data

Process or Store

Cardholder Data

E-commerce Type Relevant SAQ

Figure 6: Self-Assessment Questionnaires (SAQs) for differ-

ent types of e-commerce merchants.

Rule 2. Database port detection. For database port detection, we

choose to probe for Mysql port6. The reason for choosing Mysql

port are i) Mysql is among the top three (Mysql, Oracle, Microsoft

SQL Server) most popular databases in the world [34]; ii) Mysql is

free; and iii) it supports a wide range of programming languages.

The access to Mysql port (e.g., 3306) is disabled by default. It is

very dangerous to enable remote access to Mysql database for an

arbitrary client. We check the Mysql port using nc [36], which

is a Unix utility tool that reads and writes data across network

connections using the TCP or UDP protocol.

Rule 5. Default Mysql user/password detection. If the Mysql database

of a website is remotely accessible, we further check for the default

username and password. A typical Mysql installation has a user

łrootž with an empty password, unless it is otherwise customized or

disabled. As such, we run a Mysql client to connect to the remote

host using the default username and password. PciCheckerLite

terminates the connection immediately and raises an alert if the

attempt is successful.

Rules 3 & 19. Checking OpenSSH’s availability and version. We use

nc [36] to connect with port 22 of the remote OpenSSH server. If

OpenSSH runs on port 22, then it will return the server informa-

tion (e.g., OpenSSH version, OS type, OS version). We parse the

returned information to determine the version of the OpenSSH

server. We consider any installation versions before OpenSSH_7.6

as vulnerable.

Rules 29 & 33. Checking HTTP header information. Extracting

HTTP information does not require the rich browser functionality.

We use Java net URL APIs to open HTTP connections for

extracting HTTP headers. For case 29, we raise a warning only

6We do not probe for multiple ports to avoid suspicions for possible port scanning.
However, a similar technique can be used to probe for other databases.

if we detect that the łServerž header contains server name

and version. For case 33, we raise a warning if any of the four

security header (i.e., X-Frame-Options, X-XSS-Protection,

Strict-Transport-Security, X-Content-Type-Options) is

missing.

Rule 7. Sensitive information over HTTP.We tested whether all the

HTTP traffic is redirected to HTTPS by default. We open an HTTP

connection with the server and follow the redirection chain. If the

server doesn’t redirect to HTTPS, we raise an alert. We use Java

net URL APIs to implement this test case.

Rules 18 & 13. TLSv1.0 and weak cipher negotiation. We use

OpenSSL’s s_client tool to establish a SSL/TLS connection using

TLSv1.0 protocol. PciCheckerLite raises a warning if the connec-

tion is successful. We also use s_client to negotiate the ciphersuite

with the remote server. PciCheckerLite raises a warning if we suc-

cessfully negotiate with a ciphersuite that contains a weak cipher

(i.e., IDEA, DES, MD5).

Rules 12, 14, 15, 16 & 17. Retrieving and examining the certificate.We

use OpenSSL’s s_client tool to retrieve the SSL certificate of a remote

server. To parse the certificate, we use APIs from java.security.cert

package. To check whether a certificate is self-signed (Case 12), we

used the public key of the certificate to verify the certificate itself. To

check whether the certificate is expired, we use the checkValidity()

method of X509Certificate API (Case 14). If the subject domainname

(DN) or any alternate DN of a certificate doesn’t match with the

server domainname, then PciCheckerLite raises an alert (Case

15). Regarding the public key sizes for factoring modulus (e.g., RSA,

DSA), the discrete logarithm (e.g., Diffie-Hellman), and the elliptic

curve (e.g., ECDSA) based algorithms, NIST recommends them to

be 2048, 224 and 224 bits, respectively [33]. PciCheckerLite raises

alert if the key size is smaller than what is recommended (Case 16).

If the signing algorithm uses any of the weak hashing algorithms

(e.g., MD5, SHA, SHA1, SHA-1), PciCheckerLite raises warnings

(Case 17).

Rule 25. Script source integrity check. A website is expected to check

the integrity of any JavaScript code that is loaded externally to

the browser. To enable script source integrity check, a server can

use the łintegrityž attribute of the script tag. In the łintegrityž at-

tribute, the server should mention the hashing algorithm and the

hash value of the script that should be used to check the integrity.

PciCheckerLite downloads the index page of a website. After that,

it collects all the script tags, and checks if the script tags contain any

external URL (excluding the website’s CDN URLs). Then it looks

for the integrity attribute for the scripts loaded from external URLs,

and raises alert if the integrity attribute is missing. We only perform

this test for the index page (instead of all the pages) of a website

to keep the test lightweight. The number of vulnerable websites

detected by this test can only be interpreted as a lower bound.

Rule 30. Checking for browsable directories.We check whether the

directories are browsable in a website. To avoid redundant traffic,

we reuse the collected JavaScript script URLs for case 25. We then

examine the common parent directory of all the internal URLs. Fi-

nally, we send a GET request to fetch the content of the directory.

If directory browsing is enabled, the server will return a response

with code 200 with a page containing the listing of files and direc-

tories of the specified path. Otherwise, it should return an error

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

495

The card verification code or value (three digit or four-

digit number printed on the front or back of a payment

card) is not stored after authorization?

Yes

Yes
with
CCW No N/A

Not
Tested

2 2 2 2 2

Figure 7: A sample question from the Self-Assessment Questionnaire D (SAQ D) [28]. łYes with CCWž means łthe expected

testing has been performed, the requirement has beenmet with the assistance of a compensating control, and a Compensating

Control Worksheet (CCW) is required to be submitted along with the questionnairež .

Table 7: A summary of the guidelines for ASV scanners [19]. In the fourth column, we show the categories that are required

to be fixed. ł∗" means that in the SSL/TLS category, all the vulnerabilities are required to be fixed, except case 18.

Target Component Expectation Test-cases Must fix?

Firewalls and Routers
1. Must scan all network devices such as firewalls and external routers.
2. Must test for known vulnerabilities and patches.

1 Yes

Operating Systems
1. Must scan to determine the OS type and version.
2. An unsupported OS must be marked as an automatic failure.

- Yes

Database Servers
1. Must test for open access to databases from the Internet.
2. If found - must be marked as an automatic failure (Req. 1.3.6)

2 Yes

Web Servers
1. Must be able to test for all known vulnerabilities and configuration issues.
2. Report if directory browsing is observed.

30 Yes

Application Servers 1. Must be able to test for all known vulnerabilities and configuration issues. 29, 33 Yes
Common Web Scripts 1. Must be able to find common web scripts (e.g., CGI, e-commerce, etc.). - Yes

Built-in Accounts
1. Look for default username/passwords in routers, firewalls, OS and web or DB servers.
2. Such vulnerability must be marked as an automatic failure. (Req 2.1)

5, 6 Yes

DNS and Mail Servers
1. Must be able to detect the presence
2. Must test for known vulnerabilities and configuration issues
3. Report if a vulnerability is observed (automatic failure for DNS server vulnerabilities).

- Yes

Virtualization components 1. Must be able to test for all known vulnerabilities - Yes

Web Applications

Must find common vulnerabilities (automatically/manually) including the following:
1. Unvalidated parameters that might lead to SQL injection.
2. Cross-site scripting (XSS) flaws
3. Directory traversal vulnerabilities
4. HTTP response splitting/header injection
5. Information leakage: phpinfo(), Insecure HTTP methods, detailed error msg
6. If found any of the above must be marked as an automatic failure

21, 22, 23,
24, 25, 26, 27,
28, 31, 32

Yes

Other Applications 1. Must test for known vulnerabilities and configuration issues 20 Yes
Common Services 1. Must test for known vulnerabilities and configuration issues 19 Yes

Wireless Access Points
1. Must be able to detect wireless access points
2. Must test and report known vulnerabilities and configuration issues

- Yes

Backdoors/Malware
1. Must test for remotely detectable backdoors/malware
2. Report automatic failure if found one

- Yes

SSL/TLS

Must find:
1. Various version of crypto protocols
2. Detect the encryption algorithms and encryption key strengths
3. Detect signing algorithms used for all server certificates
4. Detect and report on certificate validity
5. Detect and report on whether CN matches the hostname
6. Mark as failure if supports SSL or early versions of TLS.

12-18 Yes∗

Anonymous Key agreement
Protocol

1. Must identify protocols allowing anonymous/non-authenticated cipher suites
2. Report if found one

- Yes

Remote Access
1. Must be able to detect remote access software
2. Must report if one is detected.
3. Must test and report known vulnerabilities and configuration issues

3, 4
19, 20

Yes

Point-of-sale (POS) Software
1. Should look for POS software
2. If found - ask for justification

- No

Embedded links or code
from out-of-scope domains

1. Should look for out-of-scope links/code
2. If found - ask for justification

- No

Insecure Services/
industry-deprecated protocols

1. If found one - ask for justification - No

Unknown services 1. Should look for unknown services and report if found - No

response code (e.g., 404 - not found, 403 - Forbidden). This test only

determines if a directory is browsable. We never store any of the

returned pages during the test.

Rule 31. HTTP TRACE supported. HTTP TRACE method is used for

diagnostic purposes. If it is enabled, the web server will respond

to a request by echoing in its response the exact request that it

has received. In [55], the author has shown that HTTP TRACE can

be used to steal sensitive information (e.g., cookie, credentials). To

examine the HTTP TRACE configuration, we send a HTTP request

by setting the method to TRACE. If the TRACE method is enabled

by the server, the server will echo the request in the response with

a code 200.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

496

Table 8: Specifications defined by the PCI Security Standard Council (SSC) along with their targets, evaluators, assessors and

whether it is enforced by SSC. łCOTS" stands for Commercial Off-The-Shelf.

PCI Specifications Target(s) Evaluator(s) Assessor(s): Type Required?

Data Security Standard (DSS) [27]
Merchant, Acquirer Bank, Issuer Bank,
Token Service Provider,
Service Provider

Acquirer,
Payment Brand

QSA: Manual
ASV: Automated

Yes

Card Production and Provisioning (CPP) [17, 18]
Card Issuer,
Card Manufacturer,
Token Service Provider

Payment Brand CPP-QSA: Manual Yes

Payment Application DSS (PA DSS) [9] PA Vendors PA-QSA PA-QSA: Manual Optional
Point-to-Point Encryption (P2PE) [6] POS Device Vendors P2PE-QSA P2PE-QSA: Manual Optional
PIN Transaction Security (PTS) [10, 30] PIN Pad Vendors PTS Labs PTS Labs: Manual Optional

3-D Secure (3DS) [16]
3DS Server,
3DS Directory Server,
3DS Access Control Server

Payment Brand 3DS-QSA: Manual Optional

Software-Based PIN Entry on COTS (SPoC) [31] PIN-based Cardholder verification method (CVM) Apps SPoC Labs SPoC Labs: Manual Optional
Token Service Provider (TSP) [7] Token Service Providers P2PE-QSA P2PE-QSA: Manual Optional

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

497

Table 9: PCI DSS requirements are presented with expected testing (from SAQ D-Mer) and the potential test-cases that can be

used to evaluate the ASV scanning.

No. Requirement Expected Testing Testcase

1.1 Formalize testing when firewall configurations change
1. Review current network diagram
2. Examine network configuration

N/A

1.2
Build a firewall to restrict "untrusted" traffic
to cardholder data environment

1. Review firewall and router config
2. Examine firewall and router config

1. Enable/disable firewall.

1.3
Prohibit direct public access between Internet
and cardholder data environment

1. Examine firewall and router config
2. Expose Mysql to the Internet
3. SSH over public Internet
4. Remote access to PhpMyadmin

1.4
Install a firewall on computers that have connectivity
to the Internet and organization’s network

1. Examine employee owned-devices N/A

2.1
Always change vendor-supplied defaults before
installing a System on the network

1. Examine vendor documentations
2. Observe system configurations

5. Use default DB user/password
6. Use default Phpmyadmin user/password

2.2
Develop a configuration standards for all system
components that address all known security vulnerabilities.

1. Examine vendor documentations
2. Observe system configurations

N/A

2.3
Encrypt using Strong cryptography all non-console
administrative access such as browser/web-based
management tools

1. Examine system components
2. Examine system configurations
3. Observe an administrator log on

7. Sensitive information over HTTP

2.4
Shared hosting providers must also comply
with PCI DSS requirements

1. Examine system inventory N/A

3.1 Establish cardholder data retention and disposal policies 1. Review data retention and disposal policies N/A

3.2
Do not store sensitive authentication data
(even it is encrypted)

1. Examine system configurations
2. Examine deletion processes

8. Store CVV in DB

3.3 Mask PAN when displayed
1. Examine system configurations
2. Observe displays of PAN

9. Show unmask PAN

3.4 Render PAN unreadable anywhere it is stored
1. Examine data repositories
2. Examine removable media
3. Examine audit logs

10. Store plain-text PAN (OpenCart)

3.5
Secure keys that are used to encrypt stored
cardholder data or other keys

1. Examine system configurations
2. Examine key storage locations

11. Use hardcoded key for encrypting PAN

3.6 Document all key-management process 1. Review key-management procedures N/A

4.1
Use strong cryptography and security protocols
during transmission of cardholder data.

1. Review system configurations

12. Use self-signed certificate
13. Use insecure block cipher
14. Use Expired certificate
15. Use cert. with wrong hostname
16. Use 1024 bit DH modulus.
17. Use weak hash in SSL certificate
18. Use TLSv1.0

4.2
Never send PAN over unprotected user
messaging technologies.

1. Review policies and procedures N/A

5.1 Deploy anti-virus software on all systems 1. Examine system configurations 2. Interview personnel N/A

5.2
Ensure all anti-virus mechanisms are current,
running and generating audit log

1. Examine anti-virus configurations
2. Review log retention process
3. Examine system configurations

N/A

6.1
Ensure that all system components are protected
from known vulnerabilities

1. Examine system components
2. Compare the list of security patches

19. Use vulnerable of OpenSSH
20. Use vulnerable PhpMyadmin

6.2
Establish a process to identify and assign risk
to newly discovered security vulnerabilities

1. Review policies and procedures N/A

6.3
Develop software applications in accordance
with PCI DSS and industry best practices

1. Review software development process N/A

6.4
Follow change control processes and procedures
for all changes to system components

1. Review change control process N/A

6.5
Develop applications based on secure coding
guidelines and review custom application code

1. Review software-development policies

21. Implant SQL injection in admin login
22. Implant SQL injection in customer login
23. Disable password retry limit
24. Disable restriction on password length.
25. Use JS from external source insecurely
26. Do not hide program crashes
27. Implant XSS
28. Implant CSRF

6.6
Ensure all public-facing applications are
protected against known attacks

1. Examine system configuration

29. Present server info in security Headers.
30. Browsable web directories.
31. Enable HTTP Trace/Track
32. Enable phpinfo()
33. Disable security headers

7
Restrict access to cardholder data
based on roles

1. Examine access control policy
2. Review vendor documentation
3. Examine system configuration
4. Interview personnel

N/A

8.47
Render all passwords unreadable during storage
and transmission for all system components

1. Examine system configuration
34. Store unsalted customer passwords
35. Store plaintext passwords

9 Restrict physical access to cardholder data
1. Observe process
2. Review policies and procedures
3. Interview personnel

N/A

10
Track and monitor all access to network
resource and cardholder data

1. Interview personnel
2. Observe audit logs
3. Examine audit log settings

N/A

11 Regularly test security systems and processes
1. Interview personnel
2. Examine scope of testing
3. Review results of ASV scans

N/A

12
Maintain a policy that addresses information
security for all personnel

1. Review formal risk assessment
2. Review security policy
3. Interview personnel.

N/A

7 Other requirements under 8 are not testable.

Session 2E: Internet Security CCS ’19, November 11–15, 2019, London, United Kingdom

498

	Abstract
	1 Introduction
	2 Background on PCI and DSS
	2.1 Payment Card Ecosystem
	2.2 PCI Council and Data Security Standard
	2.3 Our Threat Model and Method Overview

	3 Measurement Methodology
	3.1 Security Test Cases
	3.2 Testbed Architecture and Implementations
	3.3 Research Ethics

	4 Evaluation of PCI Scanners
	4.1 Comparison of Scanner Performance
	4.2 Impacts of Premature Certification
	4.3 Evaluation of Website Scanners

	5 Measurement of Compliant Websites
	6 Disclosure and Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgment
	References

